Computational Social Choice Distortion

Georgios Birmpas birbas@diag.uniroma1.it

Based on slides by Alexandros Voudouris

• A set of agents *N* and a set of alternatives *A*

- A set of agents *N* and a set of alternatives *A*
- Each agent $i \in N$ has a **value** v_{ix} for every alternative $x \in A$
- Unit-sum assumption: $\sum_{j \in A} v_{ix} = 1$
- Valuation profile: $v = (v_{ix})_{i \in N, x \in A}$

- A set of agents *N* and a set of alternatives *A*
- Each agent $i \in N$ has a **value** v_{ix} for every alternative $x \in A$
- Unit-sum assumption: $\sum_{j \in A} v_{ix} = 1$
- Valuation profile: $v = (v_{ix})_{i \in N, x \in A}$
- The values of an agent *i* for the alternatives define a ranking \succ_i over them such that $x \succ_i y$ when $v_{ix} \ge v_{iy}$

- Ties are broken according to some (fixed) tie-breaking rule

• Ordinal profile induced by a valuation profile: $\succ_v = (\succ_i)_{i \in N}$

• An ordinal profile can be induced by many different valuation profiles

• An ordinal profile can be induced by many different valuation profiles

agent	а	b	С	d
1	0.75	0.15	0.07	0.03
2	0.25	0.15	0.2	0.4
3	0.1	0	0.4	0.5
4	0.21	0.3	0.2	0.29

agent	а	b	С	d
1	0.95	0.03	0.02	0
2	0.25	0.21	0.24	0.3
3	0.24	0.21	0.25	0.3
4	0.02	0.95	0	0.03

• An ordinal profile can be induced by many different valuation profiles

agent	a	b	С	d
1	0.75	0.15	0.07	0.03
2	0.25	0.15	0.2	0.4
3	0.1	0	0.4	0.5
4	0.21	0.3	0.2	0.29

agent	a	b	С	d
1	0.95	0.03	0.02	0
2	0.25	0.21	0.24	0.3
3	0.24	0.21	0.25	0.3
4	0.02	0.95	0	0.03

agent	ranking						
1	а	b	С	d			
2	d	а	С	b			
3	d	С	а	b			
4	b	d	а	С			

 Given a valuation profile v, the social welfare of an alternative x ∈ A is defined as the total value of all agents for x:

$$SW(x|v) = \sum_{i \in N} v_{ix}$$

 Given a valuation profile v, the social welfare of an alternative x ∈ A is defined as the total value of all agents for x:

$$SW(x|v) = \sum_{i \in N} v_{ix}$$

• The social welfare is a measure of how good an alternative is for the society

 Given a valuation profile v, the social welfare of an alternative x ∈ A is defined as the total value of all agents for x:

$$SW(x|v) = \sum_{i \in N} v_{ix}$$

 The social welfare is a measure of how good an alternative is for the society ⇒ our goal is to choose the alternative with maximum social welfare

 Given a valuation profile v, the social welfare of an alternative x ∈ A is defined as the total value of all agents for x:

$$SW(x|\boldsymbol{v}) = \sum_{i \in N} v_{ix}$$

- The social welfare is a measure of how good an alternative is for the society ⇒ our goal is to choose the alternative with maximum social welfare
- If we had access to the valuation profile, we could obviously make the optimal social choice

 Given a valuation profile v, the social welfare of an alternative x ∈ A is defined as the total value of all agents for x:

$$\mathrm{SW}(x|\boldsymbol{v}) = \sum_{i \in N} v_{ix}$$

- The social welfare is a measure of how good an alternative is for the society ⇒ our goal is to choose the alternative with maximum social welfare
- If we had access to the valuation profile, we could obviously make the optimal social choice
- But ... choices are made by voting rules that have access only to the ordinal profile, and therefore electing the optimal alternative is not an easy task

• Question: How efficient is the choice made by a voting rule *R*?

- Question: How efficient is the choice made by a voting rule *R*?
- The **distortion** of *R* is the worst-case ratio (over all valuation profiles) between the maximum social welfare (achieved by any alternative) and the social welfare of the alternative chosen by *R*

dist(R) =
$$\sup_{v} \frac{\max_{x \in A} SW(x|v)}{SW(R(\succ_{v})|v)}$$

- Question: How efficient is the choice made by a voting rule *R*?
- The **distortion** of *R* is the worst-case ratio (over all valuation profiles) between the maximum social welfare (achieved by any alternative) and the social welfare of the alternative chosen by *R*

dist(R) =
$$\sup_{v} \frac{\max_{x \in A} SW(x|v)}{SW(R(\succ_{v})|v)}$$

- If dist(R) = 1 then R is optimal, and always chooses the alternative that maximizes the social welfare
- In general however: $dist(R) \ge 1$

- Question: How efficient is the choice made by a voting rule *R*?
- The **distortion** of *R* is the worst-case ratio (over all valuation profiles) between the maximum social welfare (achieved by any alternative) and the social welfare of the alternative chosen by *R*

dist(R) =
$$\sup_{v} \frac{\max_{x \in A} SW(x|v)}{SW(R(\succ_{v})|v)}$$

- If dist(R) = 1 then R is optimal, and always chooses the alternative that maximizes the social welfare
- In general however: $dist(R) \ge 1$
- We are interested in bounding the distortion of voting rules, and we want these bounds to be as small as possible

Theorem

The distortion of any deterministic voting rule is $\Omega(m)$

Theorem

The distortion of any deterministic voting rule is $\Omega(m)$

# agents	ranking					
<i>m</i> /2	x	У	<i>a</i> ₁		<i>a</i> _{<i>m</i>-2}	
<i>m</i> /2	У	x	<i>a</i> ₁		a_{m-2}	

<u>Theorem</u>

The distortion of any deterministic voting rule is $\Omega(m)$

# agents	ranking					
<i>m</i> /2	x	У	<i>a</i> ₁		a_{m-2}	
<i>m</i> /2	у	x	a_1		a_{m-2}	

- R will choose either alternative x or alternative y
- All other alternatives are dominated by these two alternatives

# agents	x	у	<i>a</i> ₁	 a_{m-2}
<i>m</i> /2	1/m	1/m	1/m	 1/m
<i>m</i> /2	0	1	0	 0

# agents	x	у	<i>a</i> ₁	 a_{m-2}
<i>m</i> /2	1/m	1/m	1/m	 1/m
<i>m</i> /2	0	1	0	 0

$$SW(x|\boldsymbol{v}) = \frac{m}{2} \cdot \frac{1}{m} = \frac{1}{2}$$
$$SW(y|\boldsymbol{v}) = \frac{m}{2} \cdot \left(1 + \frac{1}{m}\right) = \frac{m+1}{2}$$

# agents	x	у	<i>a</i> ₁	 a_{m-2}
<i>m</i> /2	1/m	1/m	1/m	 1 <i>/m</i>
<i>m</i> /2	0	1	0	 0

$$SW(x|\boldsymbol{\nu}) = \frac{m}{2} \cdot \frac{1}{m} = \frac{1}{2}$$
$$dist(R) \ge \frac{SW(y|\boldsymbol{\nu})}{SW(x|\boldsymbol{\nu})} = m+1$$
$$SW(y|\boldsymbol{\nu}) = \frac{m}{2} \cdot \left(1 + \frac{1}{m}\right) = \frac{m+1}{2}$$

Theorem

The distortion of any deterministic voting rule is $\Omega(m^2)$

Theorem

The distortion of any deterministic voting rule is $\Omega(m^2)$

- Instance with n = m(m 2) agents
- Alternatives $A = \{x, y, a_1, ..., a_{m-2}\}$

Theorem

The distortion of any deterministic voting rule is $\Omega(m^2)$

- Instance with n = m(m 2) agents
- Alternatives $A = \{x, y, a_1, \dots, a_{m-2}\}$
- For every $j \in [m 2]$, alternative a_i appears first in m rankings
- Alternative x appears second in $\frac{n}{2} = \Theta(m^2)$ rankings
- Alternative y appears second in $\frac{n}{2} = \Theta(m^2)$ rankings
- All agents that rank first the same alternative a_j, rank second either x or y

• **Case I:** The voting rule chooses alternative a_j for some $j \in [m-2]$

- **Case I:** The voting rule chooses alternative a_j for some $j \in [m 2]$
- Valuation profile *v*:
 - The m agents that rank a_j first have value 1/m for all alternatives; assume these agents rank x second
 - All other agents have value 1/2 for the alternatives they rank at the first two positions

- **Case I:** The voting rule chooses alternative a_j for some $j \in [m-2]$
- Valuation profile v:
 - The m agents that rank a_j first have value 1/m for all alternatives; assume these agents rank x second
 - All other agents have value 1/2 for the alternatives they rank at the first two positions

$$SW(a_j | \boldsymbol{v}) = m \cdot \frac{1}{m} = 1$$
$$dist(R) = \Omega(m^2)$$
$$SW(y | \boldsymbol{v}) = \Theta(m^2) \cdot \frac{1}{2} = \Theta(m^2)$$

• **Case II:** The voting rule chooses *x* or *y*

- **Case II:** The voting rule chooses *x* or *y*
- Valuation profile v':
 - All agents have value 1 for their favorite alternative a_j , and 0 for everyone else

- **Case II:** The voting rule chooses *x* or *y*
- Valuation profile v':
 - All agents have value 1 for their favorite alternative a_j , and 0 for everyone else

$$SW(x|v') = 0$$

$$SW(y|v') = 0$$

$$SW(z|v') > 0, \forall z \neq x, y$$

$$dist(R) is unbounded$$

Theorem

There exists a voting rule with distortion $O(m^2)$

<u>Theorem</u>

There exists a voting rule with distortion $O(m^2)$

• Plurality rule

<u>Theorem</u>

There exists a voting rule with distortion $O(m^2)$

- Plurality rule
- The winner x must be ranked first at least n/m times
- The corresponding agents must have value at least 1/m for x

<u>Theorem</u>

There exists a voting rule with distortion $O(m^2)$

- Plurality rule
- The winner x must be ranked first at least n/m times
- The corresponding agents must have value at least 1/m for x
- Each agent has value at most 1 for the optimal alternative y

An asymptotically tight upper bound

<u>Theorem</u>

There exists a voting rule with distortion $O(m^2)$

- Plurality rule
- The winner x must be ranked first at least n/m times
- The corresponding agents must have value at least 1/m for x
- Each agent has value at most 1 for the optimal alternative y

$$SW(x|\boldsymbol{v}) \ge \frac{n}{m} \cdot \frac{1}{m} = \frac{n}{m^2}$$

$$SW(y|\boldsymbol{v}) \le n$$

$$dist(PL) = O(m^2)$$

Randomized voting rules

• A randomized voting rule R defines a probability distribution p_R over the alternatives according to which the winning alternative is chosen

Randomized voting rules

- A randomized voting rule R defines a probability distribution p_R over the alternatives according to which the winning alternative is chosen
- The efficiency of *R* is now measured by the expected social welfare of the winner:

$$\mathbb{E}[\mathrm{SW}(R(\succ_{\boldsymbol{v}})|\boldsymbol{v})] = \sum_{x \in A} p_R(x) \cdot \mathrm{SW}(x|\boldsymbol{v})$$

Randomized voting rules

- A randomized voting rule R defines a probability distribution p_R over the alternatives according to which the winning alternative is chosen
- The efficiency of *R* is now measured by the expected social welfare of the winner:

$$\mathbb{E}[\mathrm{SW}(R(\succ_{\boldsymbol{v}})|\boldsymbol{v})] = \sum_{x \in A} p_R(x) \cdot \mathrm{SW}(x|\boldsymbol{v})$$

• Refinement of distortion:

dist(R) =
$$\sup_{\boldsymbol{v}} \frac{\max_{x \in A} SW(x|\boldsymbol{v})}{\mathbb{E}[SW(R(\succ_{\boldsymbol{v}})|\boldsymbol{v})]}$$

<u>Theorem</u>

There exists a randomized voting rule with distortion $O(\sqrt{m \cdot \ln m})$

Theorem

There exists a randomized voting rule with distortion $O(\sqrt{m \cdot \ln m})$

- Harmonic scoring rule: $\mathbf{H} = (1, 1/2, \dots, 1/m)$
- sc(x) = score of alternative x according to H

<u>Theorem</u>

There exists a randomized voting rule with distortion $O(\sqrt{m \cdot \ln m})$

- Harmonic scoring rule: $\mathbf{H} = (1, 1/2, \dots, 1/m)$
- sc(x) = score of alternative x according to H
- Voting rule:
 - Rule 1: Choose alternative x with probability $\frac{SC(x)}{\sum_{y \in A} SC(y)}$
 - Rule 2: Choose alternative x with probability 1/m
 - Run the two rules with probability 1/2 each

- Let *x* be the optimal alternative
- We distinguish between two cases, depending on the harmonic score of x

- Case I:
$$sc(x) \ge n \cdot \sqrt{\frac{\ln m + 1}{m}}$$

- Case II: $sc(x) < n \cdot \sqrt{\frac{\ln m + 1}{m}}$

Case I: $\operatorname{sc}(x) \ge n \cdot \sqrt{\frac{\ln m + 1}{m}}$

Case I:
$$\operatorname{sc}(x) \ge n \cdot \sqrt{\frac{\ln m + 1}{m}}$$

• $\sum_{y \in A} sc(y) = n \cdot \sum_{k=1}^{m} \frac{1}{k} \le n (\ln m + 1)$

Case I:
$$\operatorname{sc}(x) \ge n \cdot \sqrt{\frac{\ln m + 1}{m}}$$

• $\sum_{y \in A} sc(y) = n \cdot \sum_{k=1}^{m} \frac{1}{k} \le n (\ln m + 1)$

•
$$p_R(x) \ge \frac{1}{2} \cdot \frac{\operatorname{SC}(x)}{\sum_{y \in A} \operatorname{SC}(y)} \ge \frac{1}{2} \cdot \frac{n \cdot \sqrt{\frac{\ln m + 1}{m}}}{n (\ln m + 1)} = \frac{1}{2\sqrt{m(\ln m + 1)}}$$

Case I:
$$\operatorname{sc}(x) \ge n \cdot \sqrt{\frac{\ln m + 1}{m}}$$

• $\sum_{y \in A} sc(y) = n \cdot \sum_{k=1}^{m} \frac{1}{k} \le n (\ln m + 1)$

•
$$p_R(x) \ge \frac{1}{2} \cdot \frac{\operatorname{SC}(x)}{\sum_{y \in A} \operatorname{SC}(y)} \ge \frac{1}{2} \cdot \frac{n \cdot \sqrt{\frac{\ln m + 1}{m}}}{n (\ln m + 1)} = \frac{1}{2\sqrt{m(\ln m + 1)}}$$

$$\mathbb{E}[\mathrm{SW}(R(\succ_{v})|v)] \ge p_{R}(x) \cdot \mathrm{SW}(x|v) \ge \frac{\mathrm{SW}(x|v)}{2\sqrt{m(\ln m + 1)}}$$

Case I:
$$\operatorname{sc}(x) \ge n \cdot \sqrt{\frac{\ln m + 1}{m}}$$

• $\sum_{y \in A} sc(y) = n \cdot \sum_{k=1}^{m} \frac{1}{k} \le n (\ln m + 1)$

•
$$p_R(x) \ge \frac{1}{2} \cdot \frac{\operatorname{SC}(x)}{\sum_{y \in A} \operatorname{SC}(y)} \ge \frac{1}{2} \cdot \frac{n \cdot \sqrt{\frac{\ln m + 1}{m}}}{n (\ln m + 1)} = \frac{1}{2\sqrt{m(\ln m + 1)}}$$

$$\mathbb{E}[\mathrm{SW}(R(\succ_{v})|v)] \ge p_{R}(x) \cdot \mathrm{SW}(x|v) \ge \frac{\mathrm{SW}(x|v)}{2\sqrt{m(\ln m + 1)}}$$

 $\Rightarrow \operatorname{dist}(R) \le 2\sqrt{m(\ln m + 1)}$

Case II: $\operatorname{sc}(x) < n \cdot \sqrt{\frac{\ln m + 1}{m}}$

Case II: $\operatorname{sc}(x) < n \cdot \sqrt{\frac{\ln m + 1}{m}}$

• If alternative x is ranked k-th by agent i, then $v_{ix} \leq \frac{1}{k}$ $\Rightarrow SW(x|v) \leq sc(x)$

Case II:
$$\operatorname{sc}(x) < n \cdot \sqrt{\frac{\ln m + 1}{m}}$$

- If alternative x is ranked k-th by agent i, then $v_{ix} \le \frac{1}{k}$ $\Rightarrow SW(x|v) \le sc(x)$
- For every alternative $y \in A$: $p_R(y) \ge \frac{1}{2m}$

Case II:
$$\operatorname{sc}(x) < n \cdot \sqrt{\frac{\ln m + 1}{m}}$$

- If alternative x is ranked k-th by agent i, then $v_{ix} \le \frac{1}{k}$ $\Rightarrow SW(x|v) \le sc(x)$
- For every alternative $y \in A$: $p_R(y) \ge \frac{1}{2m}$

$$\mathbb{E}[\mathrm{SW}(R(\succ_{\boldsymbol{v}})|\boldsymbol{v})] \ge \sum_{y \in A} p_R(y) \cdot \mathrm{SW}(y|\boldsymbol{v}) \ge \frac{1}{2m} \cdot \sum_{y \in A} \mathrm{SW}(y|\boldsymbol{v}) = \frac{n}{2m}$$

Case II:
$$\operatorname{sc}(x) < n \cdot \sqrt{\frac{\ln m + 1}{m}}$$

- If alternative x is ranked k-th by agent i, then $v_{ix} \le \frac{1}{k}$ $\Rightarrow SW(x|v) \le sc(x)$
- For every alternative $y \in A$: $p_R(y) \ge \frac{1}{2m}$

$$\mathbb{E}[\mathrm{SW}(R(\succ_{v})|v)] \ge \sum_{y \in A} p_{R}(y) \cdot \mathrm{SW}(y|v) \ge \frac{1}{2m} \cdot \sum_{y \in A} \mathrm{SW}(y|v) = \frac{n}{2m}$$
$$\Rightarrow \operatorname{dist}(R) = \frac{\mathrm{SW}(x|v)}{\mathbb{E}[\mathrm{SW}(R(\succ_{v})|v)]} \le \frac{n \cdot \sqrt{\frac{\ln m + 1}{m}}}{\frac{n}{2m}} = 2\sqrt{m(\ln m + 1)}$$

Best known bounds

• We can actually do a little bit better than $O(\sqrt{m \cdot \ln m})$

Theorem

There exists a randomized voting rule with distortion $O(\sqrt{m}\log^* m)$

Best known bounds

• We can actually do a little bit better than $O(\sqrt{m \cdot \ln m})$

Theorem

There exists a randomized voting rule with distortion $O(\sqrt{m}\log^* m)$

• But, not that much better ...

<u>Theorem</u> The distortion of any randomized voting rule is $\Omega(\sqrt{m})$

• Agents have implicit values for the alternatives

- Agents have implicit values for the alternatives
- These values induce the preference rankings
 - Many different valuation profiles can induce the same ordinal profile

- Agents have implicit values for the alternatives
- These values induce the preference rankings
 - Many different valuation profiles can induce the same ordinal profile
- **Distortion:** worst case ratio over all valuation profiles between the social welfare of the optimal outcome over the social welfare of the outcome chosen by the voting rule

- Agents have implicit values for the alternatives
- These values induce the preference rankings
 - Many different valuation profiles can induce the same ordinal profile
- **Distortion:** worst case ratio over all valuation profiles between the social welfare of the optimal outcome over the social welfare of the outcome chosen by the voting rule
- **Deterministic rules:** distortion is $\Omega(m^2)$

- Agents have implicit values for the alternatives
- These values induce the preference rankings
 - Many different valuation profiles can induce the same ordinal profile
- **Distortion:** worst case ratio over all valuation profiles between the social welfare of the optimal outcome over the social welfare of the outcome chosen by the voting rule
- **Deterministic rules:** distortion is $\Omega(m^2)$
- Randomized rules: distortion is between $\Omega(\sqrt{m})$ and $\Omega(\sqrt{m} \log^* m)$

Some further readings

- The distortion of cardinal preferences in voting
 - A. D. Procaccia and J. S. Rosenschein
 - 10th Workshop on Cooperative Information Agents (CIA), pp. 317-331, 2006
- Optimal social choice functions: A utilitarian view
 - C. Boutilier, I. Caragiannis, S. Haber, T. Lu, A. D. Procaccia, and O. Sheffet
 - Artificial Intelligence, vol. 227, pp. 190-213, 2015
- Subset selection via implicit utilitarian voting
 - I. Caragiannis, S. Nath, A. D. Procaccia, and N. Shah
 - Journal of Artificial Intelligence Research, vol. 58, pp. 123-152, 2017
- Approximating optimal social choice under metric preferences
 - E. Anshelevich, O. Bhardwaj, E. Elkind, J. Postl, P. Skowron
 - Artificial Intelligence, vol. 264, pp. 27-51, 2018